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1. INTRODUCTION

We derive estimates for the error in interpolating eX by rational functions
of degree n on intervals of length less than two. Let 'lrn denote the class of all
polynomials of degree at most n with real coefficients. Our main result is the
following:

THEOREM 1. Let Y" Yz ,..., YZ n +1 be points (not necessarily distinct) in
[0, a], where a < 2. Choose Pn, Qn E 'lrn so that

for i = 1,2,..., 2n + 1.

Then, for x E [0, a],

IPn(x)/Qn(x) - e-xi
~ (2e vn eZ..;an) n!(n + I)!

2 - a (2n)!(2n + I)!

Furthermore, Qn has positive coefficients.

Let

I
zn

+ 1 ID(x-Y;) .

where 11·11 denotes the supremum norm on [a, b].

The following conjecture was made by G. Meinardus in 1964.
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CONJECTURE [3, p. 168J.

A [-1 IJ= mIn! « ))
m,lI' 2m+lI(m + n)!(m + n + I)! 1 + 0 1 .
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(1)

D. J. Newman, through some clever manipulation of the Pade approximant,
has recently proved

THEOREM A [5, p. 24 J,

A [-IIJ& 8m!n!
m,lI , "" 2m+lI (m + n)!(m + n + I)! .

G. Nemeth ([4 J, see also Braess [1]) has shown

THEOREM B.

n! n!
AII ,II[-I, IJ = 4"(2n)!(2n + I)! (1 +0(1)).

If we choose the Yj in Theorem 1 to be the zeros of the (2n + 1)st
Chebyshev polynomial (shifted to [0, a]) then we see that, up to the "slowly
growing" e2.,;c;n term, we get essentially the right order of approximation. In
light of Theorems A and B it seems plausible that the initial bracketed term
of the error estimate is superfluous.

2. PRELIMINARIES

Suppose that PII , QII E nil and suppose that PII(x) - QII(X) e- x has 2n + 1
zeros on the interval [0, a]. If QII(X) = qo + ql X + .. , + q"x" then

(PII(x) - QII(X) e-X)(I!+ I)

= (Q1I(x)e- X)(II+I)

= £ (n + 1 ) Q~k)e-X(-l)(lI+ I-k)
k=O k

II k II-k ( + 1 )
= (_1)"+1 e- x L ;. Ln. (-I)j(k+j)!qk+j'

k=O k. j=O J

Since (QII(X) e- X)(II+ I) has n zeros on [0, a J, we deduce that there exist
131'... ,1311 E [0, a] so that

II xk II-k (n + 1). IIf;o k! j~O j (-I)l(k+j)!qk+j=qll ]J(x-13;).
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- C~l ),...,(_1)n-1 (:~: )

(
n+1) n_2(n+1)° ,...,(-1) n-20,

0,

0,

(
n+ 1 ) ( n+ 1 ) ( n+ 1 ) ( n+ 1 )° '- 1 ' + 2 ,..., (-1 t n

C;l ),

0, 0, 0, ...,

(2)

We can invert (2) to obtain

(:). C: 1
). (n:2), ..., (2nn) boO!

0, (:), C;l)'''''Cn;l) b1 1!

0, 0, (: ), ..., cn;2) b2 2! (3)

0, 0, ... ,

We observe that (3) can be easily derived from (2) combined with the facts
that the (m, n) Pade approximant to e- x is given by

and that for the Pade approximant bo = b l = ... = bn _ 1 = 0.
We are now in a position to prove the following:

LEMMA 1. Suppose that Pn(x) E tfn and suppose that Qn = qo +
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ql X + ... +qnxn, where qo > O. Suppose also that Pn(x) - Qn(x) e- x has
2n + 1 zeros at Yp... , Y2n+ IE [0, a J. Then, if a < 2, Qn has positive coef­
ficients and

Proof The first part follows from an examination of (3) using the facts
that for i ~ n,

and

The second part is proved by noting that

The next lemma is a slight adaptation of a result of S. N. Bernstein
[2, p. 38J.

LEMMA 2. Suppose that f and g are m + 1 times continuously differen­
tiable on [a, bJ and suppose that f(x) = g(x) = 0 has m + 1 solutions on
[a,bJ. If

then

for xE [a, bJ

If(x)1 ~ Ig(x)1 for xE [a,bJ.

LEMMA 3 [3, pp. 16 and 165J. (a) IfYI, ...,Ym+n+1 E [a,bJ then there
exist Pm E 7rm , Qn E 7rn, so that

for i = 1,2,... , n + m + 1.

then P~/Q: interpolates e- x at exactly n +m + 1 points in [a, bJ.
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3. PROOF OF THEOREM 1

Lemma 3 guarantees the existence of Pn and Qn with the desired inter­
polation property. We may assume that

Qn(x)=qo+ ... +qn_Ixn-1 +xn.

Then, as in (1), there exist PI'"'' Pn E [0, a] so that

n

(Qix)e-X)(n+') = (_1)n+1 e- x n (X-Pi)
i=1

Hence,

Since R~n-k)(x) = n!/k! n:= 1(x - Pi.k)' where Pi.k E [0, a], we have

!(Qix) e-X)(2n+ 1) I~ f (n) n; ak

k=O k k.

,n n! a k

~ n. t-o k! k!(n - k)!

By Stirling's formula, nne-n < n! <e..;n nne-n,

A little elementary calculus reveals that (ae 2n/k2
)k has a maximum at

k =van and hence,

l(Qn(x) e-X)(2n+ 1) I~ (n + 1)! e vne2van.

We apply Lemma 2 using m = 2n + 1,

f(x) = Pn(x) - Qn(x) e-X,



RATIONAL INTERPOLATION TO eX

and

(n + 1)' 2n+l
g(x) = e yin e2..j"Qn • n (x - Yt)

(2n + I)! 1=1

and deduce that for x E [0, a],

147

We complete the result by appealing to Lemma 1 to show that for x ~ 0,

(2 - a) (2n)!
Qn(x) ~ qo ~ 2 " In.

The (1, 1) Pade approximant to e- x has denominator Q(x) = 1 + !x. It
follows that the (1, 1) rational function that interpolates e- x with
multiplicity three at any point Pwill have denominator Q/l(x) = 1 + !(x - P).
In particular if P~ 2 then Q/l does not have positive coefficients. This shows
that a < 2 is essential, at least for the n = 1 case, in Theorem 1.
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