Rational Interpolation to e^{x}

Peter B. Borwein*
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia B3H 4H8, Canada
Communicated by E. W. Cheney

Received April 20, 1981

1. Introduction

We derive estimates for the error in interpolating e^{x} by rational functions of degree n on intervals of length less than two. Let π_{n} denote the class of all polynomials of degree at most n with real coefficients. Our main result is the following:

Theorem 1. Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 n+1}$ be points (not necessarily distinct) in $[0, \alpha]$, where $\alpha<2$. Choose $P_{n}, Q_{n} \in \pi_{n}$ so that

$$
P_{n}\left(\gamma_{i}\right)-Q_{n}\left(\gamma_{i}\right) e^{-\gamma_{i}}=0 \quad \text { for } \quad i=1,2, \ldots, 2 n+1
$$

Then, for $x \in[0, \alpha]$,

$$
\begin{aligned}
& \left|P_{n}(x) / Q_{n}(x)-e^{-x}\right| \\
& \quad \leqslant\left(\frac{2 e \sqrt{n} e^{2 \sqrt{\alpha n}}}{2-\alpha}\right) \frac{n!(n+1)!}{(2 n)!(2 n+1)!}\left|\prod_{i=1}^{2 n+1}\left(x-\gamma_{i}\right)\right| .
\end{aligned}
$$

Furthermore, Q_{n} has positive coefficients.
Let

$$
\lambda_{m, n}[a, b]=\min _{p \in \pi_{m}, q \in \pi_{n}}\left\|e^{x}-p_{m}(x) / q_{n}(x)\right\|_{[a, b]}
$$

where $\|\cdot\|$ denotes the supremum norm on $[a, b]$.
The following conjecture was made by G. Meinardus in 1964.

[^0]Conjecture [3, p. 168].

$$
\lambda_{m, n}[-1,1]=\frac{m!n!}{2^{m+n}(m+n)!(m+n+1)!}(1+o(1))
$$

D. J. Newman, through some clever manipulation of the Pade approximant, has recently proved

Theorem A [5, p. 24].

$$
\lambda_{m, n}[-1,1] \leqslant \frac{8 m!n!}{2^{m+n}(m+n)!(m+n+1)!}
$$

G. Németh ([4], see also Braess [1]) has shown

Theorem B.

$$
\lambda_{n, n}[-1,1]=\frac{n!n!}{4^{n}(2 n)!(2 n+1)!}(1+O(1))
$$

If we choose the γ_{i} in Theorem 1 to be the zeros of the $(2 n+1)$ st Chebyshev polynomial (shifted to $[0, \alpha]$) then we see that, up to the "slowly growing" $e^{2 \sqrt{\alpha n}}$ term, we get essentially the right order of approximation. In light of Theorems A and B it seems plausible that the initial bracketed term of the error estimate is superfluous.

2. Preliminaries

Suppose that $P_{n}, Q_{n} \in \pi_{n}$ and suppose that $P_{n}(x)-Q_{n}(x) e^{-x}$ has $2 n+1$ zeros on the interval $[0, \alpha]$. If $Q_{n}(x)=q_{0}+q_{1} x+\cdots+q_{n} x^{n}$ then

$$
\begin{align*}
\left(P_{n}(x)\right. & \left.-Q_{n}(x) e^{-x}\right)^{(n+1)} \\
= & \left(Q_{n}(x) e^{-x}\right)^{(n+1)} \\
\quad= & \sum_{k=0}^{n}\binom{n+1}{k} Q_{n}^{(k)} e^{-x}(-1)^{(n+1-k)} \\
\quad= & (-1)^{n+1} e^{-x} \sum_{k=0}^{n} \frac{x^{k}}{k!} \sum_{j=0}^{n-k}\binom{n+1}{j}(-1)^{j}(k+j)!q_{k+j} \tag{1}
\end{align*}
$$

Since $\left(Q_{n}(x) e^{-x}\right)^{(n+1)}$ has n zeros on $[0, \alpha]$, we deduce that there exist $\beta_{1}, \ldots, \beta_{n} \in[0, \alpha]$ so that

$$
\sum_{k=0}^{n} \frac{x^{k}}{k!} \sum_{j=0}^{n-k}\binom{n+1}{j}(-1)^{j}(k+j)!q_{k+j}=q_{n} \prod_{i=1}^{n}\left(x-\beta_{i}\right)
$$

Thus, if $q_{n} \prod_{i=1}^{n}\left(x-\beta_{i}\right)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$, we have

$$
\left[\begin{array}{cccc}
\binom{n+1}{0},-\binom{n+1}{1},\binom{n+1}{2}, \ldots, & (-1)^{n} & \binom{n+1}{n} \tag{2}\\
0, & \binom{n+1}{0}, & -\binom{n+1}{1}, \ldots,(-1)^{n-1} & \binom{n+1}{n-1} \\
0, & 0, & \binom{n+1}{0}, \ldots,(-1)^{n-2} & \binom{n+1}{n-2} \\
\vdots & \vdots & \vdots \\
\vdots \\
0, & 0, & 0, & \binom{n+1}{0}
\end{array}\right]\left[\begin{array}{c}
q_{0} 0! \\
q_{1} 1! \\
q_{2} 2! \\
\vdots \\
q_{n} n!
\end{array}\right]=\left[\begin{array}{c}
b_{0} 0! \\
b_{1} 1! \\
b_{2} 2! \\
\vdots \\
b_{n} n!
\end{array}\right]
$$

We can invert (2) to obtain

$$
\left.\left[\begin{array}{cccc}
\binom{n}{n}, & \binom{n+1}{n}, & \binom{n+2}{n}, \ldots, & \binom{2 n}{n} \tag{3}\\
0, & \binom{n}{n}, & \binom{n+1}{n}, \ldots, & \binom{2 n-1}{n} \\
0, & 0, & \binom{n}{n}, & \ldots, \\
\vdots & \vdots & \vdots & \binom{2 n-2}{n} \\
\vdots \\
0, & 0, & 0, & \ldots,
\end{array}\right]\left[\begin{array}{c}
b_{0} 0! \\
b_{1} 1! \\
n
\end{array}\right)\right]\left[\begin{array}{c}
q_{0} 0! \\
b_{2} 2! \\
q_{1} 1! \\
\vdots \\
b_{n} n!
\end{array}\right]=\left[\begin{array}{c}
q_{2} 2! \\
\vdots \\
q_{n} n!
\end{array}\right] .
$$

We observe that (3) can be easily derived from (2) combined with the facts that the (m, n) Pade approximant to e^{-x} is given by

$$
\sum_{v=0}^{m} \frac{\binom{m}{v}}{\binom{m+n}{v}} \frac{(-x)^{v}}{v!} / \sum_{v=0}^{n} \frac{\binom{n}{v}}{\binom{n+m}{v}} \frac{x^{v}}{v!}
$$

and that for the Pade approximant $b_{0}=b_{1}=\cdots=b_{n-1}=0$.
We are now in a position to prove the following:
Lemma 1. Suppose that $P_{n}(x) \in \pi_{n}$ and suppose that $Q_{n}=q_{0}+$
$q_{1} x+\cdots+q_{n} x^{n}$, where $q_{0}>0$. Suppose also that $P_{n}(x)-Q_{n}(x) e^{-x}$ has $2 n+1$ zeros at $\gamma_{1}, \ldots, \gamma_{2 n+1} \in[0, \alpha]$. Then, if $\alpha<2, Q_{n}$ has positive coefficients and

$$
q_{n} \leqslant\left(\frac{2}{2-\alpha}\right) \frac{n!}{(2 n)!} q_{0}
$$

Proof. The first part follows from an examination of (3) using the facts that for $i \leqslant n$,

$$
(i-1)!\left|b_{i-1}\right| \leqslant \alpha(i!)\left|b_{i}\right| \quad \text { and } \quad\binom{n+i-1}{n} \leqslant \frac{1}{2}\binom{n+i}{n} .
$$

The second part is proved by noting that

$$
\begin{aligned}
q_{0} & \geqslant n!\left|b_{n}\right|\binom{2 n}{n}-(n-1)!\left|b_{n-1}\right|\binom{2 n-1}{n} \\
& \geqslant\left(1-\frac{\alpha}{2}\right) \frac{(2 n)!}{n!} q_{n} .
\end{aligned}
$$

The next lemma is a slight adaptation of a result of S. N. Bernstein [2, p. 38].

Lemma 2. Suppose that f and g are $m+1$ times continuously differentiable on $[a, b]$ and suppose that $f(x)=g(x)=0$ has $m+1$ solutions on $[a, b]$. If

$$
\left|f^{(m+1)}(x)\right| \leqslant g^{(m+1)}(x) \quad \text { for } \quad x \in[a, b]
$$

then

$$
|f(x)| \leqslant|g(x)| \quad \text { for } \quad x \in[a, b] .
$$

Lemma 3 [3, pp. 16 and 165]. (a) If $\gamma_{1}, \ldots, \gamma_{m+n+1} \in[a, b]$ then there exist $P_{m} \in \pi_{m}, Q_{n} \in \pi_{n}$, so that

$$
P_{m}\left(\gamma_{i}\right)-Q_{n}\left(\gamma_{i}\right) e^{-\gamma_{i}}=0 \quad \text { for } \quad i=1,2, \ldots, n+m+1
$$

(b) If $P_{m}^{*} \in \pi_{m}, Q_{n}^{*} \in \pi_{n}$ and

$$
\left\|e^{-x}-P_{m}^{*} / Q_{n}^{*}\right\|_{[a, b]}=\min _{P_{m} \in \pi_{m}, Q_{n} \in \pi_{n}}\left\|e^{-x}-P_{m} / Q_{n}\right\|_{[a, b]}
$$

then P_{m}^{*} / Q_{n}^{*} interpolates e^{-x} at exactly $n+m+1$ points in $[a, b]$.

3. Proof of Theorem 1

Lemma 3 guarantees the existence of P_{n} and Q_{n} with the desired interpolation property. We may assume that

$$
Q_{n}(x)=q_{0}+\cdots+q_{n-1} x^{n-1}+x^{n}
$$

Then, as in (1), there exist $\beta_{1}, \ldots, \beta_{n} \in[0, \alpha]$ so that

$$
\begin{aligned}
\left(Q_{n}(x) e^{-x}\right)^{(n+1)} & =(-1)^{n+1} e^{-x} \prod_{i=1}^{n}\left(x-\beta_{i}\right) \\
& =(-1)^{n+1} e^{-x} R_{n}(x)
\end{aligned}
$$

Hence,

$$
\left(Q_{n}(x) e^{-x}\right)^{(2 n+1)}=(-1)^{n+1} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} e^{-x} R_{n}^{(n-k)}(x)
$$

Since $R_{n}^{(n-k)}(x)=n!/ k!\prod_{i=1}^{k}\left(x-\rho_{i, k}\right)$, where $\rho_{i, k} \in[0, \alpha]$, we have

$$
\begin{aligned}
\left|\left(Q_{n}(x) e^{-x}\right)^{(2 n+1)}\right| & \leqslant \sum_{k=0}^{n}\binom{n}{k} \frac{n!}{k!} \alpha^{k} \\
& \leqslant n!\sum_{k=0}^{n} \frac{n!\alpha^{k}}{k!k!(n-k)!}
\end{aligned}
$$

By Stirling's formula, $n^{n} e^{-n}<n!<e \sqrt{n} n^{n} e^{-n}$,

$$
\begin{aligned}
\frac{n!\alpha^{k}}{k!k!(n-k)!} & \leqslant \frac{e \sqrt{n} \alpha^{k} e^{k} n^{n}}{k^{k} k^{k}(n-k)^{n-k}} \\
& =e \sqrt{n} \alpha^{k} e^{k} \frac{n^{k}}{k^{2 k}}\left(1+\frac{k}{n-k}\right)^{n-k} \\
& \leqslant e \sqrt{n}\left(\frac{\alpha e^{2} n}{k^{2}}\right)^{k}
\end{aligned}
$$

A little elementary calculus reveals that $\left(\alpha e^{2} n / k^{2}\right)^{k}$ has a maximum at $k=\sqrt{\alpha n}$ and hence,

$$
\left|\left(Q_{n}(x) e^{-x}\right)^{(2 n+1)}\right| \leqslant(n+1)!e \sqrt{n} e^{2 \sqrt{\alpha n}}
$$

We apply Lemma 2 using $m=2 n+1$,

$$
f(x)=P_{n}(x)-Q_{n}(x) e^{-x}
$$

and

$$
g(x)=e \sqrt{n} e^{2 \sqrt{\alpha n}} \frac{(n+1)!}{(2 n+1)!} \prod_{i=1}^{2 n+1}\left(x-\gamma_{i}\right)
$$

and deduce that for $x \in[0, \alpha]$,

$$
\left|P_{n}(x)-Q_{n}(x) e^{-x}\right| \leqslant e \sqrt{n} e^{2 \sqrt{\alpha n}} \frac{(n+1)!}{(2 n+1)!}\left|\prod_{i=1}^{2 n+1}\left(x-\gamma_{i}\right)\right|
$$

We complete the result by appealing to Lemma 1 to show that for $x \geqslant 0$,

$$
Q_{n}(x) \geqslant q_{0} \geqslant \frac{(2-\alpha)}{2} \frac{(2 n)!}{n!}
$$

The (1,1) Padé approximant to e^{-x} has denominator $Q(x)=1+\frac{1}{2} x$. It follows that the $(1,1)$ rational function that interpolates e^{-x} with multiplicity three at any point β will have denominator $Q_{\beta}(x)=1+\frac{1}{2}(x-\beta)$. In particular if $\beta \geqslant 2$ then Q_{β} does not have positive coefficients. This shows that $\alpha<2$ is essential, at least for the $n=1$ case, in Theorem 1 .

References

1. D. Braess, On the conjecture of Meinardus on rational approximation of e^{x}, J. Approx. Theory.
2. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
3. G. Meinardus, "Approximation of Functions: Theory and Numerical Methods," SpringerVerlag, New York/Berlin, 1967.
4. G. Németh, Relative rational approximation of the function e^{x}, Math. Notes 21 (1977), 325-328.
5. D. J. Newman, "Approximation with Rational Functions," American Mathematical Society, Regional Conference Series in Mathematics, No. 41, 1979.

[^0]: * Supported by the National Science and Engineering Research Council of Canada.

