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1. INTRODUCTION

We derive estimates for the error in interpolating e* by rational functions
of degree n on intervals of length less than two. Let 7, denote the class of all
polynomials of degree at most n with real coefficients. Our main result is the
following:

THEOREM 1. Let 7, V55 V2ui1 be points (not necessarily distinct) in
[0, a], where a < 2. Choose P,, Q, € 7, so that

P,(y)—0,(ype =0  for i=12,.,2n+ 1.
Then, for x € [0, a],

| Po(x)/@n(x) — ™"

2e\/ne?Ver\  nl(n+ 1)
<( 21—« )(2n)!(2n+l)!

In+1

[ (x—y,-)’ :

i=1

Furthermore, Q, has positive coefficients.

Let
A‘m,n [a’ b] = min ” ex _pm(x)/qn(x)"[a.b] ’
PEMy,QER,
where ||-|| denotes the supremum norm on |a, b].

The following conjecture was made by G. Meinardus in 1964.
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CONJECTURE |3, p. 168].

I n!
lm,"[—l,1]= m: n.

2™ (m 4+ n)l(m+n + 1)!

(14 o(1)).

D. J. Newman, through some clever manipulation of the Padé approximant,
has recently proved

THEOREM A |5, p. 24].

8m! n!
Al =111 < e

2" m 4+ n)l(m+n+ 1)

G. Németh ([4], see also Braess [1]) has shown

THEOREM B.
n!n!

hnal =11 = a1

(1+0(1)).

If we choose the y; in Theorem 1 to be the zeros of the (2n+ l)st
Chebyshev polynomial (shifted to [0, a]) then we see that, up to the “slowly
growing” e?Ven term, we get essentially the right order of approximation. In
light of Theorems A and B it seems plausible that the initial bracketed term
of the error estimate is superfluous.

2. PRELIMINARIES

Suppose that P,, Q, € n, and suppose that P,(x) — Q,(x)e™ " has 2n+ 1
zeros on the interval [0, a]. If Q,(x)=¢q¢ +q,x+ --- + g, x" then

(P(x) = Q,(x) ™) "+V
= (Q,(x) e~V

_ i (" +1 ) QWe=x(—1)n+1-k
ico \ k

n x n—k
=t ¥ 5 S (T e tan,.
Since (Q,(x)e *)"*Y has n zeros on [0,a], we deduce that there exist

Bl 3eeey ﬂn € [0’ a] so that

k n—k
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Thus, if ¢,
[ /nt1 n+1 +
(o b=+
o ()
0
0, 0, <”
0, 0,

We can invert (2) to obtain

n
n

[

I
|

n+1
n

il
)

n
n
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n+l
2

n+1
1

n+2
n

n+1
n

) (1) (
) (—1)"! (

), (1) (:_2

2n
n

- ()

n+1
n

;
)
)

n+l
n—1

+1

n+1

)

0

b, 0!
b, 1!

b,2!

b,n!

-
q,0!

q,2!

Lq,,n!

im(x—=B)=by+b;x+ - +b,x", we have

g, 1!

q,0!

q, 1!

q,2!

q,n!

5,01 ]
b 1!
5,21
b,n!
(2)
(3)

We observe that (3) can be easily derived from (2) combined with the facts
that the (m, n) Padé approximant to e ™" is given by

m
m

(5

)

n

(

(=x)°

n
v

m+
v

D
v=0 (

n

)

2.
v=0

!

=1

n+m

v

)«
)v!

and that for the Padé approximant by=5b,=..-=b,_, =0.
We are now in a position to prove the following:

LEMMA 1.

Suppose

that P,(x)€E =,

and suppose

that

Qn:q0+
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g, x+ -+ +q,x", where q,> 0. Suppose also that P,(x)—Q,(x)e ™ has
2n+1 zeros at Vi, Yops1 € [0, a]. Then, if a <2, Q, has positive coef-
ficients and

< 2 n!
In s (2—(1) 2n) 1o

Proof. The first part follows from an examination of (3) using the facts
that for i < n,

. . n+i—1 I /n+i
(i— Do | < a@@) by and ( n )<-2_( n )

The second part is proved by noting that
2n 2n—1
av>nlby| () == vris, 0 ()

> (1—ﬁ)@q". 1

2 n!

The next lemma is a slight adaptation of a result of S. N. Bernstein
{2, p. 38].

Lemma 2. Suppose that f and g are m + 1 times continuously differen-
tiable on |a,b] and suppose that f(x)=g(x)=0 has m+ 1 solutions on

[a,b]. If
/P eI<g " x)  for x € [a, b]
then
f)I<lgx)  for x€la,b]

LEmMA 3 [3, pp. 16 and 165]. (@) If ¥yses Vmyns1 € |G, b] then there
exist P, €m,,, Q,€E n,, so that

P, (y)—Q,y)e =0 for i=1,2,.,n+m+1.
(b) IfPrten,, QFen, and

le™ = PE/Q liawy=, min _ lle™™ = Pp/Qulia.n

mER Q€N
then P*/QF interpolates e * at exactly n + m + 1 points in [a, b].

640/35/2-4
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3. PrROOF OF THEOREM 1

Lemma 3 guarantees the existence of P, and Q, with the desired inter-
polation property. We may assume that

0.(X)=gqo+ - +g,_ X" +x".

Then, as in (1), there exist 3, ,..., 8, € [0, a] so that

n

(Qu(x) e™ )" D = (=1)"""e” H —B)

=(=1)"*' e~*R (x).

Hence,

(Q,.(x) e—x)(2n+l) —_ (_1)n+1 i < Z ) (—l)k e"‘Rf,"""(x).

k=0

Since RY"~9(x) = n!/k! 15, (x — p; 4), where p, , € [0, a], we have

(Qux) 652"+ z (,’:) 2

n! a*

Z EPICED IR
By Stirling’s formula, n"e™" < n! < e+/nn"e",

n! a* ev/na*e*n"

K1) S BR = F
k n—k
—e\/_ae W( ——k)
e\/—(ae n) )

A little elementary calculus reveals that (ae’n/k’)* has a maximum at
k =v/an and hence,

[(Q.(x) e™) "V | (n+ 1) ey/neVer,

We apply Lemma 2 using m=2n+ 1,
Sx)=P,(x) — Qu(x) e,
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and

1 | 2n+1

and deduce that for x € [0, 2],

2n+1

I1 (x—vl)l :

i=1

1
12,0 = Q) e  e/meV TSN

We complete the result by appealing to Lemma 1 to show that for x >0,

> 2—a) (2m)! .

2 n! i

Q.(x) >

The (1, 1) Padé approximant to e™* has denominator Q(x) =1 + §x. It
follows that the (1,1) rational function that interpolates e™* with
multiplicity three at any point 8 will have denominator Qg(x) =1 + 3(x — B).
In particular if 8> 2 then Q, does not have positive coefficients. This shows
that a < 2 is essential, at least for the n = 1 case, in Theorem 1.
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